next up previous
Next:

BTEC論文集 Vol.9(1999年7月) JASCOME

新しい多重極積分方程式法によるクラック問題の解析について

APPLICATION OF NEW MULTIPOLE BOUNDARY INTEGRAL EQUATION METHOD

TO CRACK PROBLEMS

西村  直志, 宮越  優 , 小林  昭一

Naoshi NISHIMURA, Masaru MIYAKOSHI and Shoichi KOBAYASHI

 1)京都大学工学研究科 ¯(〒606-8501 京都市左京区吉田本町,Email:nchml@gee.kyoto-u.ac.jp)

2)京都大学大学院 (〒606-8501 京都市左京区吉田本町, Email:miya@gspsun1.gee.kyoto-u.ac.jp)

3)福井工業大学工学部 (〒910-8505 福井市学園3--6--1, Email:skoba@gee.kyoto-u.ac.jp)

5 zw

This paper discusses applications of a new multipole boundary integral equation method for crack problems in Laplace's equation. The proposed implementation uses a new multipole expansion proposed by Hrycak and Rokhlin in conjunction with collocation in the solution of a discretised hypersingular boundary integral equation for crack problems. The resulting numerical equation is solved with GMRES (generalised minimum residual method). It is found that the obtained code is faster than another based on the original FMM.

Keywords:

Multipole Boundary Integral Equation Method, FMM, Diagonal Form, GMRES, Crack, Fast Method





N. Nishimura
Tue Nov 30 16:38:10 JST 1999