next up previous
Next: About this document Up: No Title Previous: Concluding Remarks

References

1
Alessandrini, G. and Diaz Valenzuela, A., Unique determination of multiple cracks by two measurements. SIAM J. Control Optim., 34 (1996), pp.913--921.

2
Andrieux, S., Fonctionnelles d'écart à la réciprocité généralisé et identification de fissures par des mesures surabondantes des surface. C.R. Acad. Sci. Paris, 320 Série I (1995), pp.1553--1559.

3
Andrieux, S. and Ben Abda, A., Identification de fissures planes par une donnée de bord unique; un procédé direct de localisation et d'identification. C.R. Acad. Sci. Paris, 315 Série I (1992), pp.1323--1328.

4
Becache, E., Nedelec, J.C. and Nishimura, N., Regularization in 3D for anisotropic elastodynamic crack and obstacle problems. J. Elasticity., 31 (1993), pp.25--46.

5
Bryan, K. and Vogelius, M., A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurements. SIAM J. Math. Anal., 9 (1992), pp.950--958.

6
Bryan, K. and Vogelius, M., A computational algorithm to determine crack locations from electrostatic boundary measurements. The case of multiple cracks. Int. J. Eng. Sci., 32 (1994), pp.579--603.

7
Bueckner, H. F., A novel principle for the computation of stress intensity factors. ZAMM, 59 (1970), pp.529--546.

8
Elcrat, A.R. and Hu, C., Determination of surface and interior cracks form electrostatic measurements using Schwarz-Christoffel transformations. Int. J. Eng. Sci., 34 (1996), pp.1165--1181.

9
Eller, M., Identification of cracks in three-dimensional bodies by many boundary measurements. Inverse Problems, 12 (1996), pp.395--408.

10
Friedman, A. and Vogelius, M., Determining cracks by boundary measurements. Indiana Univ. Math. J., 38 (1989), pp.527--556.

11
Hansen, P.C., Analysis of discrete ill-posed problems by means of the L-curve. SIAM review, 34 (1992), pp.561--580.

12
Hirose, S., Inverse scattering for flaw type classification. In; Inverse Problems in Engineering Mechanics (Eds. M.Tanaka and H.D.Bui) (Springer, 1992), pp.359--366.

13
Kim, H. and Seo, J.K., Unique determination of a collection of a finite number of cracks from two boundary measurements. SIAM J. Math. Anal., 27 (1996), pp.1336--1340.

14
Kobayashi, S and Nishimura, N., Inverse boundary element methods in NDE. Proc. 1st US-Japan Symp. Advances in NDT, (ASNT, 1996), pp.210--215.

15
Kress, R., Inverse scattering from an open arc. Math. Method Appl. Sci, 18 (1995), pp.267--293.

16
Kress, R., Inverse scattering from a crack. J. Inverse Ill-Posed Problems, 3 (1995), pp.305--313.

17
Kress, R., Inverse elastic scattering from a crack. Inverse Problems, 12 (1996), pp.667--684.

18
Kubo, S., Inverse problems related to the mechanics and fracture of solids and structures. JSME Int. J., 31 (1988), pp.157--166.

19
Kubo, S., Sakagami, T. and Ohji, K., On the uniqueness of the inverse solution in crack determination by the electric potential CT method. Trans JSME(A), 55 (1989), pp.2316--2319. (in Japanese)

20
Liepa, V., Santosa, F. and Vogelius, M., Crack determination from boundary measurements-reconstruction using experimental data. J. Nondestruct. Eval., 12 (1993), pp.163--174.

21
Mellings, S.C. and Aliabadi, M.H., Dual boundary element formulation for inverse potential problems in crack identification. Eng. Anal. Boundary Elements, 12 (1993), pp.275--281.

22
Mellings, S.C. and Aliabadi, M.H., Three-dimensional flaw identification using inverse analysis. Int. J. Eng. Sci., 34 (1996), pp.453--469.

23
Nishimura, N., A numerical method of crack determination by the boundary integral equation method. In; Ill-Posed Problems in Natural Sciences (ed. A. Tikhonov), (VSP/TVP, 1992), pp. 553--562.

24
Nishimura, N., A boundary integral equation method for solving elastodynamic crack determination problems. In; Proc. 2nd Int. Conf. on Mathematical and Numerical Aspects of Wave Propagation (eds. R. Kleinman et al.), (SIAM, 1993), pp.390--397.

25
Nishimura, N., Numerical solutions of various crack determination problems with BIEM. In; Modelling. Computation and Analysis in Fracture Mechanics, Lecture Notes in Numerical and Applied Analysis 13 (eds. Y. Fujitani et al.), (Kinokuniya, 1994), pp.201--215.

26
Nishimura, N., Crack Determination in time domain via boundary integral equation method. Proc. Asian Control Conference, II, (1994), pp. 27-30.

27
Nishimura, N., Furukawa, A. and Kobayashi, S., Regularised boundary integral equations for an inverse problem of crack determination in time domain. In; Boundary Element Methods---Fundamentals and Applications (eds. S. Kobayashi and N. Nishimura), (Springer, 1992), pp.252--261.

28
Nishimura, N. and Kobayashi, S., A regularized boundary integral equation method for elastodynamic crack problems. Comp. Mech., 4 (1989), pp.319--328.

29
Nishimura, N. and Kobayashi, S., Regularised BIEs for crack shape determination problems. In; Boundary Elements XII (Eds. M. Tanaka, C.A. Brebbia and T. Honma), 2, (Springer, 1990), pp.425--434.

30
Nishimura, N. and Kobayashi, S., A boundary integral equation method for an inverse problem related to crack detection. Int. J. Num. Meth. Eng., 32 (1991), pp.1371--1387.

31
Nishimura, N. and Kobayashi, S., Advanced dynamic fracture mechanics analysis. In; Advanced Dynamic Analysis by Boundary Element Methods (Developments in BEM--7) (Eds. P.K. Banerjee and S. Kobayashi), (Elsevier, 1992), pp.1--26.

32
Nishimura, N. and Kobayashi, S., Determination of cracks having arbitrary shapes with the boundary integral equation method. Eng. Anal. Boundary Elements, 15 (1995), pp.180--195.

33
Nishimura, N. and Kobayashi, S., Identification of transducer characteristics via BIEM and laser measurements. Proc. 13th Japan Nat. Symp. BEM, (1996), pp.107--112. (in Japanese)

34
Oishi, A., Yamada, K., Yoshimura, S. and Yagawa, G., Quantitative nondestructive evaluation with ultrasonic method using neural networks and computational mechanics. Comp. Mech. 15 (1995), pp.521--533.

35
Saka, M., Oouchi, A., and Abé, H., NDE of a crack by using closely coupled probes for DCPD technique. J. Pressure Vessel Tech., 118 (1996), pp.198--202.

36
Sakagami, T., Kubo, S., Ohji, K., Yamamoto, K. and Nakatsuka, K., Identification of a three-dimensional internal crack by the electric potential CT method. Trans JSME(A), 56 (1990), pp.27--32. (in Japanese)

37
Santosa, F. and Vogelius, M., A computational algorithm to determine cracks from electrostatic boundary measurements. Int. J. Eng. Sci., 29 (1991), pp.917--937.

38
Tanaka, M., Nakamura, M. and Nakano, T., Detection of cracks in structural components by the elastodynamic boundary element method. In; Proc. BEM12 (eds. M. Tanaka et al.), 2, (Comp. Mech. Publ., 1990), pp.413--424.


N. Nishimura
Thu Feb 19 01:36:51 JST 1998