next up previous
Next:

to 境界要素法論文集 Vol.14(1997年12月) JASCOME

多重極積分方程式法による3次元クラック問題の解析について

A MULTIPOLE BOUNDARY INTEGRAL EQUATION METHOD

FOR CRACK PROBLEMS IN 3D

西村  直志, 吉田 研一, 小林  昭一

Naoshi NISHIMURA, Ken-ichi YOSHIDA and Shoichi KOBAYASHI

 1)京都大学工学研究科,¯(〒606-01 京都市左京区吉田本町,Email:nchml@gee.kyoto-u.ac.jp)

2)京都大学大学院, (〒606-01 京都市左京区吉田本町,Email:yoshida@gspsun3.gee.kyoto-u.ac.jp)

3)京都大学工学研究科,¯(〒606-01 京都市左京区吉田本町,Email:skoba@gee.kyoto-u.ac.jp)

This paper discusses a three dimensional multipole boundary integral equation method for crack problems in Laplace's equation. The proposed implementation uses collocation and piecewise constant shape functions to discretise the hypersingular boundary integral equation for crack problems. The resulting numerical equation is solved with GMRES (generalised minimum residual method) in connection with FMM (fast multipole method). It is found that the obtained code is faster than a conventional one when the number of unknowns is greater than about 1300.

Keywords:

Multipole Boundary Integral Equation Method, FMM, GMRES, Crack, Fast Method





N. Nishimura
Mon Feb 23 18:28:07 JST 1998