**1**-
K. Abe and K. Koro.

BEM analysis with piecewise constant non-orthogonal wavelets.

In*Proc. of the 16th Japan National Symposium on Boundary Element Methods*, volume 16, pages 51-56, 1999.

(in Japanese). **2**-
M. Abramowitz and I.A. Stegun.
*Handbook of Mathematical Functions*.

Dover, New York, 1965. **3**-
A.W. Appel.

An efficient program for many-body simulation.*SIAM J. Sci. Stat. Comp.*, 6:85-103, 1985. **4**-
J. Barnes and P. Hut.

A hierarchical*O*(*N logN*) force calculation algorithm.*Nature*, 324:446-449, 1986. **5**-
G. Beylkin, R. Coifman, and V.Rokhlin.

Fast wavelet transforms and numerical algorithms i.*Comm. Pure Appl. Math.*, 44:141-183, 1991. **6**-
L.C. Bidenharn and J.D. Louck.
*Angular momentum in quantum physics: theory and application*.

Addison Wesley, Lodon, 1981. **7**-
J. Board and K. Schulten.

The fast multipole algorithm.*Comp. Sci. Eng.*, 2(1):76-79, 2000. **8**-
M. Challacombe, C. White, and M. Head-Gordon.

Periodic boundary conditions and the fast multipole method.*J. Chem. Phys.*, 107(23):10131-10140, 1997. **9**-
W.-H. Chen and C.-C. Huang.

Three-dimensional thermal analysis of an infinite solid containig an elliptical surface crack.*Int. J. Fracture*, 54:225-234, 1992. **10**-
Y.H. Chen, W.C. Chew, and S. Zeroug.

Fast multipole method as an efficient solver for 2D elastic wave surface integral equations.*Comp. Mech.*, 20:495-506, 1997. **11**-
H. Cheng, L. Greengard, and V. Rokhlin.

A fast adaptive multipole algorithm in three dimensions.*J. Comp. Phys.*, pages 468-498, 1999. **12**-
R. Coifman, V. Rokhlin, and S. Wandzura.
*IEEE Antennas and Propagation Magzine*, 35(3):7-12, 1993. **13**-
B. Dembart and E. Yip.

The accuracy of fast multipole methods for Maxwell's equations.*IEEE Comp. Sci. Eng.*, 5(3):48-56, 1998. **14**-
H.-Q. Ding, N. Karasawa, and W.A. Goddard III.

Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions.*J. Chem. Phys.*, 97(6):4309-4315, 1992. **15**-
W.D. Elliott and J.A. Board Jr.

Fast multipole algorithm for the Lennard-Jones potential.

Technical Report 94-005, Duke University, 1994. **16**-
W.D. Elliott and J.A. Board Jr.

Fast Fourier transform accelerated fast multipole algorithm.*SIAM J. Sci. Comput.*, 17(2):398-415, 1996. **17**-
M.A. Epton and B. Dembart.

Multipole translation theory for the three-dimensional Laplace and Helmholtz equations.*SIAM J. Sci. Comput.*, 16(4):865-897, 1995. **18**-
Y. Fu, K.J. Klimkowski, G.J. Rodin, E. Berger, J.C. Browne, J.K. Singer, R.A.
van de Geijin, and K.S. Vemaganti.

A fast solution method for three-dimensional many-particle problems of linear elasticity.*Int. J. Numer. Meth. Engng.*, 43:1215-1229, 1998. **19**-
Y. Fu, J.R. Overfelt, and G.J. Rodin.

Fast summation methods and integral equations.

In M. Bonnet, A.M. Saendig, and W. Wendland, editors,*Mathematical Aspects of Boundary Element Methods*, pages 128-139. CRC Press, 1999. **20**-
Y. Fu and G.J. Rodin.

Fast solution method for three-dimensional Stokesian many-particle problems.*Commun. Numer. Meth. Engng.*, 16:145-149, 2000. **21**-
H. Fujiwara.

The fast multipole method for integral equations of seismic scattering problems.*Geophys. Int. J.*, pages 773-782, 1998. **22**-
H. Fujiwara.

The fast multipole method for solving integral equations of three-dimensional topography and basin problems.*Geophys. Int. J.*, pages 198-210, 2000. **23**-
T. Fukui and J. Hattori.

Fast multipole boundary element method.

In*Proc. Conf. Computational Engineering and Science*, volume 1, pages 319-322, 1996.

(in Japanese). **24**-
T. Fukui and K. Inoue.

Fast multipole boundary element method in 2D elastodynamics.*J. Appl. Mech. JSCE*, 1:373-380, 1998.

(in Japanese). **25**-
T. Fukui and J. Katsumoto.

Fast multipole algorithm for two dimensional Helmholtz equation and its application to boundary element method.

In*Proc. 15th Japan Nat. Symp. BEM*, volume 15, pages 10-20, 1997.

(in Japanese). **26**-
T. Fukui and J. Katsumoto.

Fast multipole boundary element method accelerated by FFT in two dimensional scattering problems.

In*Proc. 15th Japan Nat. Symp. BEM*, volume 15, pages 93-98, 1998.

(in Japanese). **27**-
T. Fukui and T. Kutsumi.

Fast multipole boundary element method in three dimensional elastostatic problems.

In*Proc. 15th Japan Nat. Symp. BEM*, volume 15, pages 99-104, 1998.

(in Japanese). **28**-
T. Fukui and T. Mochida.

Fast multipole boundary element analysis in plane elastostatics.

In*Proc. Conf. Computational Engineering and Science*, volume 2, pages 321-324, 1997.

(in Japanese). **29**-
N. Geng, A. Sullivan, and L. Carin.

Fast multipole method for scattering from 3-D PEC targets situated in a half-space enviroment.*Microwave Opt. Technol. Lett.*, 21(6), 1999. **30**-
J.E. Gomez and H. Power.

A multipole direct and indirect bem for 2D cavity flow at low reynolds number.*Eng. Anal. Boundary Elements*, 19:17-31, 1997. **31**-
J.E. Gomez and H. Power.

A parallel mulipolar indirect boundary element method for the Neumann interior Stokes flow problem.*Int. J. Numer. Meth. Engng.*, 48:523-543, 2000. **32**-
A.E. Green and W. Zerna.
*Theoretical Elasticity*.

Oxford University Press, London, 1968. **33**-
L. Greengard.
*The rapid evaluation of potential fields in particle systems*.

MIT Press, Cambridge, Massachusetts, 1988. **34**-
L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura.

Accelerating fast multipole methods for the Helmholtz equation at low frequencies.*IEEE Comp. Sci. Eng.*, 5(3):32-38, 1998. **35**-
L. Greengard and V. Rokhlin.

A fast algorithm for particle simulations.*J. Compuat. Phys.*, 73:325-348, 1987. **36**-
L. Greengard and V. Rokhlin.

A new version of the fast multipole method for the Laplace equation in three dimensions.*Acta Numerica*, pages 229-269, 1997. **37**-
M.F. Gyure and M.A. Stalzer.

A prescription for the multilevel Helmholtz FMM.*IEEE Comp. Sci. Eng.*, 5(3):39-47, 1998. **38**-
W. Hackbusch and Z.P. Nowak.

On the fast matrix multiplication in the boundary element method by panel clustering.*Numerische Mathmatik*, 54:463-491, 1989. **39**-
K. Hayami and S.A. Sauter.

A formulation of panel clustering method for the three-dimensional elastostatics problem.

In*Proc. of the 13th Japan National Symposium on Boundary Element Methods*, volume 13, pages 125-130, 1996. **40**-
K. Hayami and S.A. Sauter.

Application of panel clustering method to the three-dimensional 3-d elastostatic problems.

In M. Marchettia, C.A. Brebbia, and M.H. Aliabadi, editors,*Boundary Elements XIX*, pages 625-634. Computational Mechanics Publications, 1997. **41**-
K. Hayami and S.A. Sauter.

Panel clustering for 3-d elastostatics using spherical harmonics.

In A. Kassab et al., editors,*Boundary Elements XX*, pages 289-298. Computational Mechanics Publications, 1998. **42**-
J. Helsing.

Fast and accurate numerical solution to an elastostatic problem involving ten thousand randomly oriented cracks.*Int. J. Fracture*, 100:321-327, 2000. **43**-
E.W. Hobson.
*The theory of spherical and ellipsoidal harmonics*.

Cambridge University Press, 1931. **44**-
T. Hrycak and V. Rokhlin.

An improved fast multipole algorithm for potential fields.*SIAM J. Sci. Comput.*, 19(6):1804-1826, 1998. **45**-
B. Hu, W.C. Chew, E. Michielssen, and J. Zhao.

Fast inhomogeneous plane wave algorithm for the fast analysis of two-dimensional scattering problems.*Radio Science*, 34(4):759-772, 1999. **46**-
B. Hu, W.C. Chew, E. Michielssen, and J. Zhao.

Fast inhomogeneous plane wave algorithm for electromagnetic solutions in layered medium structures: Two-dimensional case.*Radio Science*, 35(1):31-43, 2000. **47**-
T. Iritani, K. Yoshida, N. Nishimura, and S. Kobayashi.

A new formulation of FMBIEM in elastodynamics.

In*Proc. Conf. Computational Engineering and Science*, volume 5, pages 301-304, 2000.

(in Japanese). **48**-
J.F. Leathrum Jr. and J.A. Board Jr.

The parallel fast multipole algorithm in three dimensions.

Technical Report 92-001, Duke University, 1992. **49**-
T. Kaneko, K. Amaya, and S. Aoki.

Effective optimization of corrosion protection design by fast multipole boundary element method.

In*Proc. of the 13th Computational Mechanics Conference*, volume 00-17, pages 91-92, 2000.

(in Japanese). **50**-
S. Koc and W.C. Chew.

Calculation of acoustical scattering from a cluster of scatterers.*J. Acoust. Soc. Am.*, 103(2):721-734, 1998. **51**-
V.D. Kupradze, T.G. Gegelia, M.O. Bashelishvili, and T.V. Burchuladze.
*Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity*.

North-Holland, 1979. **52**-
C. Lage and C. Schwab.

Wavelet Galerkin algorithms for boundary integral equations.*SIAM J. Sci. Comput.*, 20(6):2195-2222, 1999. **53**-
A. Leitner.

Diffraction of sound by a circular disk.*J. Acoust. Soc. Am.*, 21(4):331-334, 1949. **54**-
C.-C. Lu and W.C. Chew.

A multilevel algorithm for solving a boundary integral equation of wave scattering.*Microwave Opt. Technol. Lett.*, 7(10), 1994. **55**-
C.C. Lu and W.C. Chew.

Fast algorithm for solving hybrid integral equations.*IEE Proc. H*, 140(6):455-460, 1993. **56**-
A.K. Mal.

Interaction of elastic waves with a penny-shaped crack.*Int. J. Engng. Sci.*, 8:381-388, 1970. **57**-
A.A. Mammoli and M.S. Ingber.

Stokes flow around cylinders in a bounded two-dimensional domain using mutlipole-accelerated boundary element.*Int. J. Numer. Meth. Engng.*, 44:897-917, 1999. **58**-
A.A. Mammoli and M.S. Ingber.

Parallel multipole BEM simulation of two-dimensional suspension flows.*Eng. Anal. Boundary Elements*, 24:65-73, 2000. **59**-
A. MESSIAH.
*Quantum mechanics*.

John Wiley & Sons, New York, 1968. **60**-
M. Miyakoshi, N. Nishimura, and S. Kobayashi.

Fast multipole Galerkin integral equation method for crack problems.

In*Proc. BTEC-98*, pages 39-42, 1998.

(in Japanese). **61**-
P.M. Morse and H. Feshbach.
*Methods of theoretical physics*.

McGraw-Hill, New York, 1953. **62**-
T. Nishida and K. Hayami.

Application of the fast multipole method to the 3D BEM analysis of electron guns.

In M. Marchettia, C.A. Brebbia, and M.H. Aliabadi, editors,*Boundary Elements XIX*, pages 613-622. Computational Mechanics Publications, 1997. **63**-
N. Nishimura and S. Kobayashi.

A regularized boundary integral equation method for elastodynamic crack problems.*Comp. Mech.*, 4:319-328, 1989. **64**-
N. Nishimura, M. Miyakoshi, and S. Kobayashi.

Application of new multipole boundary integral equation method to crack problems.

In*Proc. BTEC-99*, pages 75-78, 1999.

(in Japanese). **65**-
N. Nishimura, K. Yoshida, and S. Kobayashi.

A fast multipole boundary integral equation method for crack problems in 3D.*Eng. Anal. Boundary Elements*, 23:97-105, 1999. **66**-
J.M. Perez-Jorda and W. Yang.

A concise redefinition of the solid spherical harmonics and its use in fast multipole methods.*J. Chem. Phys.*, 104(20):8003-8006, 1996. **67**-
T. von Petersdoff, C. Schwab, and R. Schneider.

Multi wavelets for second-kind integral equations.*SIAM J. Num. Anal.*, 34:2213-2227, 1997. **68**-
A. Rathsfeld.

A wavelet algorithm for the boundary element solution of a geodetic boundary value problem.*Comm. Meth. Appl. Math. Eng.*, 157:267-287, 1998. **69**-
V. Rokhlin.

Rapid solution of integral equations of classical potential theory.*J. Comp. Phys.*, 60:187-207, 1985. **70**-
V. Rokhlin.

Rapid solution of integral equations of scattering theory in two dimensions.*J. Comp. Phys.*, 86:414-439, 1990. **71**-
V. Rokhlin.

Diagonal forms of translation operators for the Helmholtz equation in three dimensions.*Appl. Comp. Harmonic Anal.*, 1:82-93, 1993. **72**-
V. Rokhlin.

Sparse diagonal forms for translation operators for the Helmholtz equation in two dimensions.*Appl. Comp. Harmonic Anal.*, 5:36-67, 1998. **73**-
S.A. Sauter.

Variable order panel clustering(extended version).

Preprint 52, Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig, 1999. **74**-
K. Schulten and R.G. Gordon.

Exact recursive evaluation of 3j- and 6j-coefficients for quantum-mechanical coupling of angular momenta.*J. Math. Phys.*, 16(10):1961-1970, 1975. **75**-
A. Sommerfeld.
*Partial differential equations in physics*.

Academic Press, 1949. **76**-
J. Song, C.-C. Lu, and W.C. Chew.

Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects.*IEEE Trans. Antennas Propagation*, 45(10), 1997. **77**-
J.M. Song and W.C. Chew.

Fast multipole method solution using parametric geometry.*Microwave Opt. Technol. Lett.*, 7(16):760-765, 1994. **78**-
T. Takahashi, N. Nishimura, and S. Kobayashi.

Fast multipole BEM simulation of overcoring in an improved conical-end borehole strain method.

In*Proc. of the 13th Japan National Symposium on Boundary Element Methods*, volume 13, pages 125-130, 1996.

(in Japanese). **79**-
T. Takahashi, N. Nishimura, and S. Kobayashi.

A multipole integral equation method for stationary stokes flow problems in 3D.

In*Proc. BTEC*, volume 10, pages 1-4, 2000.

(in Japanese). **80**-
P.R. Wallace.
*Mathematical analysis of physical problems*.

Dover, New York, 1984. **81**-
C.A. White and M. Head-Gordon.

Derivation and efficient implementation of the fast multipole method.*J. Chem. Phys.*, 101(8):6593-6605, 1994. **82**-
C.A. White and M. Head-Gordon.

Rotating around the quartic angular momentum barrier in fast multipole method calculations.*J. Chem. Phys.*, 105(12):5061-5067, 1996. **83**-
N. Yarvin and V. Rokhlin.

Generalized Gaussian quadratures and singular value decomposition of integral operators.*SIAM J. Sci. Comput.*, 20(2):699-718, 1998. **84**-
K. Yoshida, N. Nishimura, and S. Kobayashi.

Analysis of three dimensional elastostatic crack problems with fast multipole boundary integral equation method.*J. Appl. Mech. JSCE*, 1:365-372, 1998.

(in Japanese). **85**-
K. Yoshida, N. Nishimura, and S. Kobayashi.

Analysis of three dimensional scattering of elastic waves by a crack with fast multipole boundary integral equation method.*J. Appl. Mech. JSCE*, 3:143-150, 2000.

(in Japanese). **86**-
K. Yoshida, N. Nishimura, and S. Kobayashi.

Analysis of three dimensional scattering of scalar waves by cracks with fast multipole boundary integral equation method.*Trans. JSME (A)*, 67:16-22, 2001.

(in Japanese). **87**-
K. Yoshida, N. Nishimura, and S. Kobayashi.

Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D.*Int. J. Numer. Meth. Engng.*, 50:525-547, 2001. **88**-
K. Yoshida, N. Nishimura, and S. Kobayashi.

Application of new fast multipole boundary integral equation method to crack problems in 3D.*Eng. Anal. Boundary Elements*, 25:239-247, 2001. **89**-
K. Yoshida, N. Nishimura, and S. Kobayashi.

Application of new fast multipole boundary integral equation method to elastostatic crack problems in three dimensions.*J. Structure Eng. JSCE*, 47A:169-179, 2001. **90**-
H. Yoshikawa, N. Nishimura, and S. Kobayashi.

Fast solution method for three dimensional crack problems using wavelet BIEM.

In*Proc. of the 16th Japan National Symposium on Boundary Element Methods*, volume 16, pages 63-68, 1999.

(in Japanese).