next up previous contents
Next: About this document ... Up: Applications of Fast Multipole Previous: Regularisation of BIE in

Bibliography

1
K. Abe and K. Koro.
BEM analysis with piecewise constant non-orthogonal wavelets.
In Proc. of the 16th Japan National Symposium on Boundary Element Methods, volume 16, pages 51-56, 1999.
(in Japanese).

2
M. Abramowitz and I.A. Stegun.
Handbook of Mathematical Functions.
Dover, New York, 1965.

3
A.W. Appel.
An efficient program for many-body simulation.
SIAM J. Sci. Stat. Comp., 6:85-103, 1985.

4
J. Barnes and P. Hut.
A hierarchical O(N logN) force calculation algorithm.
Nature, 324:446-449, 1986.

5
G. Beylkin, R. Coifman, and V.Rokhlin.
Fast wavelet transforms and numerical algorithms i.
Comm. Pure Appl. Math., 44:141-183, 1991.

6
L.C. Bidenharn and J.D. Louck.
Angular momentum in quantum physics: theory and application.
Addison Wesley, Lodon, 1981.

7
J. Board and K. Schulten.
The fast multipole algorithm.
Comp. Sci. Eng., 2(1):76-79, 2000.

8
M. Challacombe, C. White, and M. Head-Gordon.
Periodic boundary conditions and the fast multipole method.
J. Chem. Phys., 107(23):10131-10140, 1997.

9
W.-H. Chen and C.-C. Huang.
Three-dimensional thermal analysis of an infinite solid containig an elliptical surface crack.
Int. J. Fracture, 54:225-234, 1992.

10
Y.H. Chen, W.C. Chew, and S. Zeroug.
Fast multipole method as an efficient solver for 2D elastic wave surface integral equations.
Comp. Mech., 20:495-506, 1997.

11
H. Cheng, L. Greengard, and V. Rokhlin.
A fast adaptive multipole algorithm in three dimensions.
J. Comp. Phys., pages 468-498, 1999.

12
R. Coifman, V. Rokhlin, and S. Wandzura.
IEEE Antennas and Propagation Magzine, 35(3):7-12, 1993.

13
B. Dembart and E. Yip.
The accuracy of fast multipole methods for Maxwell's equations.
IEEE Comp. Sci. Eng., 5(3):48-56, 1998.

14
H.-Q. Ding, N. Karasawa, and W.A. Goddard III.
Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions.
J. Chem. Phys., 97(6):4309-4315, 1992.

15
W.D. Elliott and J.A. Board Jr.
Fast multipole algorithm for the Lennard-Jones potential.
Technical Report 94-005, Duke University, 1994.

16
W.D. Elliott and J.A. Board Jr.
Fast Fourier transform accelerated fast multipole algorithm.
SIAM J. Sci. Comput., 17(2):398-415, 1996.

17
M.A. Epton and B. Dembart.
Multipole translation theory for the three-dimensional Laplace and Helmholtz equations.
SIAM J. Sci. Comput., 16(4):865-897, 1995.

18
Y. Fu, K.J. Klimkowski, G.J. Rodin, E. Berger, J.C. Browne, J.K. Singer, R.A. van de Geijin, and K.S. Vemaganti.
A fast solution method for three-dimensional many-particle problems of linear elasticity.
Int. J. Numer. Meth. Engng., 43:1215-1229, 1998.

19
Y. Fu, J.R. Overfelt, and G.J. Rodin.
Fast summation methods and integral equations.
In M. Bonnet, A.M. Saendig, and W. Wendland, editors, Mathematical Aspects of Boundary Element Methods, pages 128-139. CRC Press, 1999.

20
Y. Fu and G.J. Rodin.
Fast solution method for three-dimensional Stokesian many-particle problems.
Commun. Numer. Meth. Engng., 16:145-149, 2000.

21
H. Fujiwara.
The fast multipole method for integral equations of seismic scattering problems.
Geophys. Int. J., pages 773-782, 1998.

22
H. Fujiwara.
The fast multipole method for solving integral equations of three-dimensional topography and basin problems.
Geophys. Int. J., pages 198-210, 2000.

23
T. Fukui and J. Hattori.
Fast multipole boundary element method.
In Proc. Conf. Computational Engineering and Science, volume 1, pages 319-322, 1996.
(in Japanese).

24
T. Fukui and K. Inoue.
Fast multipole boundary element method in 2D elastodynamics.
J. Appl. Mech. JSCE, 1:373-380, 1998.
(in Japanese).

25
T. Fukui and J. Katsumoto.
Fast multipole algorithm for two dimensional Helmholtz equation and its application to boundary element method.
In Proc. 15th Japan Nat. Symp. BEM, volume 15, pages 10-20, 1997.
(in Japanese).

26
T. Fukui and J. Katsumoto.
Fast multipole boundary element method accelerated by FFT in two dimensional scattering problems.
In Proc. 15th Japan Nat. Symp. BEM, volume 15, pages 93-98, 1998.
(in Japanese).

27
T. Fukui and T. Kutsumi.
Fast multipole boundary element method in three dimensional elastostatic problems.
In Proc. 15th Japan Nat. Symp. BEM, volume 15, pages 99-104, 1998.
(in Japanese).

28
T. Fukui and T. Mochida.
Fast multipole boundary element analysis in plane elastostatics.
In Proc. Conf. Computational Engineering and Science, volume 2, pages 321-324, 1997.
(in Japanese).

29
N. Geng, A. Sullivan, and L. Carin.
Fast multipole method for scattering from 3-D PEC targets situated in a half-space enviroment.
Microwave Opt. Technol. Lett., 21(6), 1999.

30
J.E. Gomez and H. Power.
A multipole direct and indirect bem for 2D cavity flow at low reynolds number.
Eng. Anal. Boundary Elements, 19:17-31, 1997.

31
J.E. Gomez and H. Power.
A parallel mulipolar indirect boundary element method for the Neumann interior Stokes flow problem.
Int. J. Numer. Meth. Engng., 48:523-543, 2000.

32
A.E. Green and W. Zerna.
Theoretical Elasticity.
Oxford University Press, London, 1968.

33
L. Greengard.
The rapid evaluation of potential fields in particle systems.
MIT Press, Cambridge, Massachusetts, 1988.

34
L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura.
Accelerating fast multipole methods for the Helmholtz equation at low frequencies.
IEEE Comp. Sci. Eng., 5(3):32-38, 1998.

35
L. Greengard and V. Rokhlin.
A fast algorithm for particle simulations.
J. Compuat. Phys., 73:325-348, 1987.

36
L. Greengard and V. Rokhlin.
A new version of the fast multipole method for the Laplace equation in three dimensions.
Acta Numerica, pages 229-269, 1997.

37
M.F. Gyure and M.A. Stalzer.
A prescription for the multilevel Helmholtz FMM.
IEEE Comp. Sci. Eng., 5(3):39-47, 1998.

38
W. Hackbusch and Z.P. Nowak.
On the fast matrix multiplication in the boundary element method by panel clustering.
Numerische Mathmatik, 54:463-491, 1989.

39
K. Hayami and S.A. Sauter.
A formulation of panel clustering method for the three-dimensional elastostatics problem.
In Proc. of the 13th Japan National Symposium on Boundary Element Methods, volume 13, pages 125-130, 1996.

40
K. Hayami and S.A. Sauter.
Application of panel clustering method to the three-dimensional 3-d elastostatic problems.
In M. Marchettia, C.A. Brebbia, and M.H. Aliabadi, editors, Boundary Elements XIX, pages 625-634. Computational Mechanics Publications, 1997.

41
K. Hayami and S.A. Sauter.
Panel clustering for 3-d elastostatics using spherical harmonics.
In A. Kassab et al., editors, Boundary Elements XX, pages 289-298. Computational Mechanics Publications, 1998.

42
J. Helsing.
Fast and accurate numerical solution to an elastostatic problem involving ten thousand randomly oriented cracks.
Int. J. Fracture, 100:321-327, 2000.

43
E.W. Hobson.
The theory of spherical and ellipsoidal harmonics.
Cambridge University Press, 1931.

44
T. Hrycak and V. Rokhlin.
An improved fast multipole algorithm for potential fields.
SIAM J. Sci. Comput., 19(6):1804-1826, 1998.

45
B. Hu, W.C. Chew, E. Michielssen, and J. Zhao.
Fast inhomogeneous plane wave algorithm for the fast analysis of two-dimensional scattering problems.
Radio Science, 34(4):759-772, 1999.

46
B. Hu, W.C. Chew, E. Michielssen, and J. Zhao.
Fast inhomogeneous plane wave algorithm for electromagnetic solutions in layered medium structures: Two-dimensional case.
Radio Science, 35(1):31-43, 2000.

47
T. Iritani, K. Yoshida, N. Nishimura, and S. Kobayashi.
A new formulation of FMBIEM in elastodynamics.
In Proc. Conf. Computational Engineering and Science, volume 5, pages 301-304, 2000.
(in Japanese).

48
J.F. Leathrum Jr. and J.A. Board Jr.
The parallel fast multipole algorithm in three dimensions.
Technical Report 92-001, Duke University, 1992.

49
T. Kaneko, K. Amaya, and S. Aoki.
Effective optimization of corrosion protection design by fast multipole boundary element method.
In Proc. of the 13th Computational Mechanics Conference, volume 00-17, pages 91-92, 2000.
(in Japanese).

50
S. Koc and W.C. Chew.
Calculation of acoustical scattering from a cluster of scatterers.
J. Acoust. Soc. Am., 103(2):721-734, 1998.

51
V.D. Kupradze, T.G. Gegelia, M.O. Bashelishvili, and T.V. Burchuladze.
Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity.
North-Holland, 1979.

52
C. Lage and C. Schwab.
Wavelet Galerkin algorithms for boundary integral equations.
SIAM J. Sci. Comput., 20(6):2195-2222, 1999.

53
A. Leitner.
Diffraction of sound by a circular disk.
J. Acoust. Soc. Am., 21(4):331-334, 1949.

54
C.-C. Lu and W.C. Chew.
A multilevel algorithm for solving a boundary integral equation of wave scattering.
Microwave Opt. Technol. Lett., 7(10), 1994.

55
C.C. Lu and W.C. Chew.
Fast algorithm for solving hybrid integral equations.
IEE Proc. H, 140(6):455-460, 1993.

56
A.K. Mal.
Interaction of elastic waves with a penny-shaped crack.
Int. J. Engng. Sci., 8:381-388, 1970.

57
A.A. Mammoli and M.S. Ingber.
Stokes flow around cylinders in a bounded two-dimensional domain using mutlipole-accelerated boundary element.
Int. J. Numer. Meth. Engng., 44:897-917, 1999.

58
A.A. Mammoli and M.S. Ingber.
Parallel multipole BEM simulation of two-dimensional suspension flows.
Eng. Anal. Boundary Elements, 24:65-73, 2000.

59
A. MESSIAH.
Quantum mechanics.
John Wiley & Sons, New York, 1968.

60
M. Miyakoshi, N. Nishimura, and S. Kobayashi.
Fast multipole Galerkin integral equation method for crack problems.
In Proc. BTEC-98, pages 39-42, 1998.
(in Japanese).

61
P.M. Morse and H. Feshbach.
Methods of theoretical physics.
McGraw-Hill, New York, 1953.

62
T. Nishida and K. Hayami.
Application of the fast multipole method to the 3D BEM analysis of electron guns.
In M. Marchettia, C.A. Brebbia, and M.H. Aliabadi, editors, Boundary Elements XIX, pages 613-622. Computational Mechanics Publications, 1997.

63
N. Nishimura and S. Kobayashi.
A regularized boundary integral equation method for elastodynamic crack problems.
Comp. Mech., 4:319-328, 1989.

64
N. Nishimura, M. Miyakoshi, and S. Kobayashi.
Application of new multipole boundary integral equation method to crack problems.
In Proc. BTEC-99, pages 75-78, 1999.
(in Japanese).

65
N. Nishimura, K. Yoshida, and S. Kobayashi.
A fast multipole boundary integral equation method for crack problems in 3D.
Eng. Anal. Boundary Elements, 23:97-105, 1999.

66
J.M. Perez-Jorda and W. Yang.
A concise redefinition of the solid spherical harmonics and its use in fast multipole methods.
J. Chem. Phys., 104(20):8003-8006, 1996.

67
T. von Petersdoff, C. Schwab, and R. Schneider.
Multi wavelets for second-kind integral equations.
SIAM J. Num. Anal., 34:2213-2227, 1997.

68
A. Rathsfeld.
A wavelet algorithm for the boundary element solution of a geodetic boundary value problem.
Comm. Meth. Appl. Math. Eng., 157:267-287, 1998.

69
V. Rokhlin.
Rapid solution of integral equations of classical potential theory.
J. Comp. Phys., 60:187-207, 1985.

70
V. Rokhlin.
Rapid solution of integral equations of scattering theory in two dimensions.
J. Comp. Phys., 86:414-439, 1990.

71
V. Rokhlin.
Diagonal forms of translation operators for the Helmholtz equation in three dimensions.
Appl. Comp. Harmonic Anal., 1:82-93, 1993.

72
V. Rokhlin.
Sparse diagonal forms for translation operators for the Helmholtz equation in two dimensions.
Appl. Comp. Harmonic Anal., 5:36-67, 1998.

73
S.A. Sauter.
Variable order panel clustering(extended version).
Preprint 52, Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig, 1999.

74
K. Schulten and R.G. Gordon.
Exact recursive evaluation of 3j- and 6j-coefficients for quantum-mechanical coupling of angular momenta.
J. Math. Phys., 16(10):1961-1970, 1975.

75
A. Sommerfeld.
Partial differential equations in physics.
Academic Press, 1949.

76
J. Song, C.-C. Lu, and W.C. Chew.
Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects.
IEEE Trans. Antennas Propagation, 45(10), 1997.

77
J.M. Song and W.C. Chew.
Fast multipole method solution using parametric geometry.
Microwave Opt. Technol. Lett., 7(16):760-765, 1994.

78
T. Takahashi, N. Nishimura, and S. Kobayashi.
Fast multipole BEM simulation of overcoring in an improved conical-end borehole strain method.
In Proc. of the 13th Japan National Symposium on Boundary Element Methods, volume 13, pages 125-130, 1996.
(in Japanese).

79
T. Takahashi, N. Nishimura, and S. Kobayashi.
A multipole integral equation method for stationary stokes flow problems in 3D.
In Proc. BTEC, volume 10, pages 1-4, 2000.
(in Japanese).

80
P.R. Wallace.
Mathematical analysis of physical problems.
Dover, New York, 1984.

81
C.A. White and M. Head-Gordon.
Derivation and efficient implementation of the fast multipole method.
J. Chem. Phys., 101(8):6593-6605, 1994.

82
C.A. White and M. Head-Gordon.
Rotating around the quartic angular momentum barrier in fast multipole method calculations.
J. Chem. Phys., 105(12):5061-5067, 1996.

83
N. Yarvin and V. Rokhlin.
Generalized Gaussian quadratures and singular value decomposition of integral operators.
SIAM J. Sci. Comput., 20(2):699-718, 1998.

84
K. Yoshida, N. Nishimura, and S. Kobayashi.
Analysis of three dimensional elastostatic crack problems with fast multipole boundary integral equation method.
J. Appl. Mech. JSCE, 1:365-372, 1998.
(in Japanese).

85
K. Yoshida, N. Nishimura, and S. Kobayashi.
Analysis of three dimensional scattering of elastic waves by a crack with fast multipole boundary integral equation method.
J. Appl. Mech. JSCE, 3:143-150, 2000.
(in Japanese).

86
K. Yoshida, N. Nishimura, and S. Kobayashi.
Analysis of three dimensional scattering of scalar waves by cracks with fast multipole boundary integral equation method.
Trans. JSME (A), 67:16-22, 2001.
(in Japanese).

87
K. Yoshida, N. Nishimura, and S. Kobayashi.
Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D.
Int. J. Numer. Meth. Engng., 50:525-547, 2001.

88
K. Yoshida, N. Nishimura, and S. Kobayashi.
Application of new fast multipole boundary integral equation method to crack problems in 3D.
Eng. Anal. Boundary Elements, 25:239-247, 2001.

89
K. Yoshida, N. Nishimura, and S. Kobayashi.
Application of new fast multipole boundary integral equation method to elastostatic crack problems in three dimensions.
J. Structure Eng. JSCE, 47A:169-179, 2001.

90
H. Yoshikawa, N. Nishimura, and S. Kobayashi.
Fast solution method for three dimensional crack problems using wavelet BIEM.
In Proc. of the 16th Japan National Symposium on Boundary Element Methods, volume 16, pages 63-68, 1999.
(in Japanese).



Ken-ichi Yoshida
2001-07-28