**1**- Rokhlin, V.: Rapid solution of integral equations of
classical potential theory, J. Comp. Phys.,
**60**, pp.187-207, 1985. **2**-
Greengard, L.: The rapid evaluation of potential
fields in particle systems, The MIT Press, 1987.
**3**-
Nishimura, N., Yoshida, K. and Kobayashi, S.: A fast multipole
boundary integral equation method for crack problems in 3D,
Eng. Anal. Boundary Elements,
**23**, pp.97-105, 1999. **4**-
Fu, Y., Klimkowski, K.J., Rodin, G.J., Berger, E.,
Browne, J.C., Singer, J.K., van de Geijin, R.A. and Vemaganti,
K.S.: A fast solution method for three-dimensional
many-particle problems of linear elasticity,
Int. J. Num. Meth. Eng.,
**42**, pp.1215-1229, 1998. **5**-
Fukui, T. and Kutsumi, T.: Fast multipole boundary element
method in three dimensional elastostatic problems,
Proc. 15th Japan Nat. Symp. BEM,
**15**, pp.99-104, 1998 (in Japanese). **6**-
Takahashi, T., Kobayashi, S. and Nishimura, N.: Fast
multipole BEM simulation of overcoring in an improved conical-end
borehole strain measurement method, Mechanics and Engineering in
Honor of Professor Qinghua Du's 80th Anniversary, Tsinghua
University Press, pp.120-127, 1999.
**7**-
Yoshida, K., Nishimura, N. and Kobayashi, S.: Analysis
of three dimensional elastostatic crack problems with fast multipole
boundary integral equation method, J. Appl. Mech. JSCE,
**1**, pp.365-372, 1998 (in Japanese). **8**-
Yoshida, K., Nishimura, N. and Kobayashi, S.:
Application of fast multipole Galerkin boundary integral
equation method to elastostatic crack problems in 3D,
Int. J. Numer. Meth. Engng.,
**50**, pp.525-547, 2001. **9**-
Fujiwara, H.: The fast multipole method for solving
integral equations of three-dimensional topography and basin
problems, Geophys. J. Int.,
**140**, pp.198-210, 2000. **10**-
Yoshida, K., Nishimura, N. and Kobayashi, S.:
Analysis of three dimensional scattering of elastic waves by a
crack with fast multipole bounday integral equation method,
J. Appl. Mech. JSCE,
**3**, pp.143-150, 2000 (in Japanese). **11**- Rokhlin, V.: Rapid solution of integral equations of
scattering theory in two dimensions, J. Comp. Phys.,
**86**, pp.414-439, 1990. **12**- Rokhlin, V.: Diagonal forms of translation operator
for the Helmholtz equation in three dimensions, Appl. Comp. Harmon.
Anal.,
**1**, pp.82-93, 1993. **13**- Koc, S. and Chew, W.C.: Calculation of acoustical
scattering from a cluster of scatterers, J. Acoust. Soc. Am.,
**103**, pp.721-734, 1998. **14**- Epton, M.A. and Dembart, B.: Multipole translation
theory for the three-dimensional Laplace and Helmholtz equations,
SIAM J. Sci. Comp.,
**16**, pp.865-897, 1995. **15**- Elliot, W.D. and Board, J.A. JR.: Fast Fourier
transform accelerated fast multipole algorithm, SIAM
J. Sci. Comp.,
**17**, pp.398-415, 1995. **16**- Dembart, B. and Yip, E.:
The accuracy of fast multipole methods for Maxwell's
equations, IEEE Comp. Sci. Eng.,
**5**, pp.48-56, 1998. **17**-
Hrycak, T. and Rokhlin, V.: An improved fast multipole
algorithm for potential fields, SIAM J. Sci. Comp.
**19**, pp.1804-1826, 1998. **18**-
Greengard, L. and Rokhlin, V.: A new version of the fast
multipole method for the Laplace equation in three dimensions.
Acta Numerica,
**6**, pp.229-270, 1997. **19**-
Cheng, H., Greengard, L. and Rokhlin, V.: A fast
adaptive multipole algorithm in three dimensions, J. Comp. Phys.,
**155**, pp.468-498, 1999. [.5cm]17cm **20**-
Greengard, L., Huang, J., Rokhlin, V. and Wandzura, S.:
Accelerating fast multipole methods for the Helmholtz equation
at low frequencies, IEEE Comp. Sci. Eng.,
**5**, pp.32-38, 1998. **21**- Nishimura, N., Miyakoshi, M. and Kobayashi, S.:
Application of new multipole boundary integral equation method to
crack problems, Proc. BTEC-99, pp.75-78, 1999 (in Japanese).
**22**-
Fu, Y., Overfelt, J.R. and Rodin, G.J.: Fast summation
methods and integral equations: Mathematical Aspects of Boundary
Element Methods (Eds. M. Bonnet, A.M. Saendig and W. Wendland),
CRC Press, pp.128-139, 1999.
**23**-
Yarvin, N. and Rokhlin, V.: Generalized Gaussian
quadratures and singular value decomposition of integral operators,
SIAM J. Sci. Comp.,
**20**, pp.699-718, 1998. **24**-
Perez-Jorda, J.M. and Yang, W.: A concise redefinition of
the solid spherical harmonics and its use in fast multipole
methods, J. Chem. Phys.,
**104**, pp.8003-8006, 1996. **25**-
Biedenharn, L.C. and Louck, J.D.: Angular momentum in
quantum physics: theory and application, Addison Wesley,
London, 1981.
**26**- Nishida, T. and Hayami, K.: Application of the fast multipole method to the 3D BEM analysis of electron guns, Boundary Elements XIX, Computational Mechanics Publications, pp.613-622, 1997.

[.5cm]10cm