next up previous
Next: About this document ... Up: 多重極積分方程式法を用いたクラックによる3次元弾性波動散乱問題の解析 Previous: 結言

Bibliography

1
Rokhlin, V.: Rapid solution of integral equations of classical potential theory, J. Comp. Phys., 60, pp.187-207, 1995.

2
Greengard, L.: The rapid evaluation of potential fields in particle systems, The MIT Press, 1987.

3
牧野淳一郎, 川井敦: 研究展望:高速多重極法--粒子法へ の応用を中心として, 応用力学論文集, 2, pp.101-109, 1999.

4
三上益弘, 川田正晃: 大規模系のための分子動力学法の高速 化・加速化法, 材料, 48, 2, pp.189-197, 1999.

5
西田徹志, 速水謙: 高速多重極展開法による3次元境界要素 法の高速化, 計算工学講演論文集, 1, pp.315-318, 1996.

6
西村直志, 吉田研一, 小林昭一: 多重極積分方程式法による3 次元クラック問題の解析について, 境界要素法論文集, 14, pp.37-41, 1997.

7
福井卓雄, 玖津見敏広: 3次元静弾性問題の高速多重極境界要 素法による解析, 計算工学講演会論文集, 4, pp.963-966, 1999.

8
Fu, Y., Klimkowski, KJ., Rodin, GJ., Berger, E., Browne, JC., Singer, JK., Geijin, van de RA. and Vemaganti, KS.: A fast solution method for three-dimensional many-particle problems of linear elasticity, Int. J. Num. Meth. Eng., 42, pp.1215-1229, 1998.

9
Takahashi, T., Kobayashi, S. and Nishimura, N.: Fast multipole BEM simulation of overcoring in an improved conical-end borehole strain measurement method, Mechanics and Engineering in Honor of Professor Qinghua Du's 80th Anniversary, pp.120-127, Tsinghua University Press, Beijing 1999.

10
吉田研一, 西村直志, 小林昭一: 多重極積分方程式を用いた 3次元静弾性クラック問題の解析, 応用力学論文集,1, pp.365-372, 1998.

11
Yoshida, K., Nishimura, N. and Kobayashi, S.: Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D, to apper in Int. J. Num. Meth. Eng.

12
Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions, J. Comp. Phys., 86, pp.414-439, 1990.

13
Rokhlin, V.: Diagonal forms of translation operator for the Helmholtz equation in three dimensions, Appl. Comp. Harmon. Anal., 1, pp.82-93, 1993.

14
福井卓雄, 勝本順三: 高速Fourier変換を援用した高速多重極 境界要素法による2次元散乱問題の解析,境界要素法論文集, 15, pp.99-104, 1998.

15
Koc, S. and Chew, W.C.: Calculation of acoustical scattering from a cluster of scatterers, J. Acoust. Soc. Am., 103, 2, pp.721-734, 1998.

16
Gyure, M.F. and Stalzer, M.A.: A prescription for the multilevel Helmholtz FMM, IEEE Comp. Sci. Eng., 5, pp.39-47, 1998.

17
Epton, M.A. and Dembart, B.: Multipole translation theory for the three-dimensional Laplace and Helmholtz equations, SIAM J. Sci. Compt., 16, pp.865-897, 1995.

18
Elliot, W.D. and Board, J.A.JR.: Fast Fourier transform accelerated fast multipole algorithm, SIAM J. Sci. Comp., 17, pp.398-415, 1995.

19
Dembart, B. and Yip, E.: The accuracy of fast multipole methods for Maxwell's equations, IEEE Comp. Sci. Eng., 5, pp.48-56, 1998.

20
Hrycak, T. and Rokhlin, V.: An improved fast multipole algorithm for potential fields, SIAM J. Sci. Comp., 19, pp.1804-1826, 1998.

21
Greengard, L. and Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions, Acta Numerica, 6, pp.229-270, 1997.

22
Cheng, H., Greengard, L. and Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions, J. Comp. Phys., 155, pp.468-498, 1999.

23
Greengard, L., Huang, J., Rokhlin, V. and Wandzura, S.: Accelerating fast multipole methods for the Helmholtz equation at low frequencies, IEEE Comp. Sci. Eng., 5, pp.32-38, 1998.

24
西村直志, 宮越優, 小林昭一: 新しい多重極積分方程式法に よるクラック問題の解析について, BTEC論文集, 9, pp.75-78, 1999.

25
Fujiwara, H.: The fast multipole method for solving integral equations of three-dimensional topography and basin problems, Geophys. J. Int., 140, pp.198-210, 2000.

26
Abramowitz, M. and Stegun, I.A.: Handbook of mathematical functions, Dover, New York 1970.

27
Tanaka, M., Sladek, V. and Sladek, J.: Regularization techniques applied to boundary element methods, Appl. Mech. Reviews, 47, pp.457-499, 1994.

28
Song, J., Lu, C.-C. and Chew, W.C.: Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects, IEEE Trans. Antennas Propag., 45, pp.1488-1493, 1997.

29
Mal, A.K.: Interaction of elastic waves with a penny-shaped crack, Int. J. Engng. Sci., 8, pp.381-388, 1970.



Ken-ichi Yoshida
2000-08-31